Four New Pregnane Glycosides from the Stems of Marsdenia tenacissima

by Xiao-Ling Wang^a)^b), Qi-Fa Li^b), Kai-Bei Yu^c), Shu-Lin Peng^a), Yan Zhou^a), and Li-Sheng Ding^{*a})

^a) Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P. R. China (fax: +86-28-8522-2753; e-mail: lsding@cib.ac.cn)

^b) Ethnic Pharmaceutical Institute, Southwest University for Nationalities, Chengdu 610041, P. R. China ^c) Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China

Four new pregnane glycosides, tenacigenosides A-D (1-4), along with six known pregnane aglycones and five known pregnane glycosides, were isolated from the stems of *Marsdenia tenacissima* (ROXB.) WIGHT et ARN. (Asclepiadaceae). The chemical structures of the new compounds were established by 1D- and 2D-NMR as well as HR-MS analyses. The absolute configuration of 1 was confirmed by X-ray crystallography.

Introduction. – *Marsdenia tenacissima* (ROXB.) WIGHT et ARN. (Asclepiadaceae), distributed in Southwest China, is known to have anti-inflammation, anti-asthmatic, and anti-cancer properties [1]. Previous chemical investigations on this plant showed the presence of pregnanes and aromatic acids [2–20]. Some pregnane glycosides showed cytotoxicity against KB cells [7].

Herein, we report four new pregnane glycosides, tenacigenosides A–D (1–4), which were isolated from the stems of *M. tenacissima*, together with eleven known pregnanes: tenacigenin A (5) [6][14], tenacigenin B (6) [6][9], 17 β -tenacigenin B (7) [15], tenacissoside A (8) [11][14], tenacissoside F (9) [11], tenacissoside G (10) [10][11], marsdenoside H (11) [14], 11 α -O-(2-methylbutanoyl)-12 β -O-acetyl-tenacigenin B (12) [7], 11 α -O-tigloyl-12 β -O-acetyl-tenacigenin B (13) [7], marsdenoside D (14) [14], and tenacigenin C (15) [6][15].

Results and Discussion. – The four new compounds **1**–**4** gave rise to positive *Liebermann–Burchard*, *Keller–Kiliani*, and xanthydrol reactions, indicating that they were all steroidal glycosides containing 2-deoxy sugar moieties [14][16]. Compound **1** was obtained as colorless prisms. Its molecular formula, $C_{35}H_{56}O_{12}$, was deduced by HR-ESI-MS (*m*/*z* 691.3661 ([*M*+Na]⁺; calc 691.3669). Its IR spectrum showed absorptions at 3403 (OH) and 1712 (C=O) cm⁻¹. The structure of **1** was established by ¹H- and ¹³C-NMR spectroscopy (*Tables 1* and 2, resp.), including DEPT, HSQC, HMBC, and NOESY experiments, as well as by X-ray single-crystal diffraction (see *Fig. 1* below; see also *Exper. Part*).

The ¹H-NMR spectrum of **1** showed the presence of two anomeric signals at δ (H) 4.83 (*dd*, *J*=10, 2 Hz) and 5.32 (br. *d*, *J*=8 Hz), with the corresponding ¹³C-NMR signals at δ (C) 97.3 and 101.8, respectively, suggesting that **1** was a disaccharide glycoside. The glycosidic linkages were in β -orientation, as deduced from the coupling constants of the two anomeric signals. The NMR data of the sugar moiety was in good agreement

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

Abbreviations:

Ac = acetyl, MBu = 2-methylbutanoyl, Tig = tigloyl (= (*E*)-2-methylbut-2-enoyl), Pac = pachybiosyl (= 2,6-dideoxy-4-O-(6-deoxy-3-O-methyl- β -D-allopyranosyl)-3-O-methyl- β -D-arabino-hexopyranosyl)

with those of tenacissoside F (9) [11], indicating that the sugar moiety of 1 was also pachybiose (=2,6-dideoxy-4-O-(6-deoxy-3-O-methyl- β -D-allopyranosyl)-3-O-methyl- β -D-arabino-hexopyranose). This was confirmed by mild acid hydrolysis of 1, which gave pachybiose exclusively, as identified by co-TLC with an authentic sample.

The ¹³C-NMR data of the aglycone part of **1** (*Table 2*) showed signals of a C₂₁-steroidal skeleton resembling 17 β -tenacigenin B (**7**) [14]. Glycosidation shifts in **1** relative to **7** were observed for C(2) ($\Delta\delta$ – 0.5), C(3) (+5.4), and C(4) (– 3.0), indicating that the sugar moiety in **1** was linked at the 3-O-atom of the aglycone [21]. This was confirmed by an HMBC correlation between δ (H) 4.83 (H–C(1')) and δ (C) 76.3 (C(3)). Thus, the structure of **1** was identified as 3-*O*-pachybiosyl-17 β -tenacigenin B, and named *tenacigenoside* A^1). The structure of **1** was also unequivocally confirmed by X-ray single-crystal diffraction (*Fig. 1*).

Compound **2** was obtained as colorless needles. The molecular formula, $C_{35}H_{54}O_{10}$, was established by HR-ESI-MS (m/z 657.3595, ($[M+Na]^+$; calc. 657.3615). The IR spectrum showed OH absorption bands at 3457 cm⁻¹, and C=O absorptions at 1707, 1713, and 1738 cm⁻¹. The ¹H-NMR spectrum of **2** (*Table 1*) showed one anomeric signal at δ (H) 4.63 (d, J = 8 Hz), with δ (C) 97.1. The glycosidic linkage was β -oriented, based

¹) For systematic names, see the *Exper. Part*.

Position	1 ^a)	2	3	4		
1′	4.83 (dd, J=10, 2)	4.63 (d, J=8)	4.56 (d, J=9)	4.56 (d, J=9)		
2'	1.79 - 1.81 (m),	1.46 - 1.48 (m),	1.47 - 1.49 (m),	1.48–1.49 (m),		
	2.45 - 2.46(m)	2.28 - 2.30 (m)	2.30-2.31(m)	2.30-2.32(m)		
3′	3.65 - 3.67(m)	3.16 - 3.18(m)	3.34 - 3.37(m)	3.39 - 3.41 (m)		
3'-MeO ^b)	3.53 (s)	3.39 (s)	3.37 (s)	3.37 (s)		
4′	3.62 - 3.63 (m)	3.19 - 3.21 (m)	3.33 - 3.34(m)	3.34 - 3.35(m)		
5′	3.63 - 3.64(m)	3.31 - 3.34(m)	3.54 - 3.57(m)	3.56 - 3.57 (m)		
6'	1.69(d, J=5)	1.36(d, J=6)	1.36 (s)	1.36(d, J=5)		
1″	5.32(d, J=8)		4.79(d, J=8)	4.80(d, J=8)		
2''	3.88 - 3.90 (m)		3.48 - 3.49 (m)	3.47 - 3.48 (m)		
3″	4.07(t, J=2.8)		3.79(t, J=4)	3.79 (br. s)		
3"-MeO	3.83 (s)		3.66(s)	3.66 (s)		
4''	3.62(d, J=2.8)		3.19(t, J=8)	3.19(d, J=3)		
5″	4.14 - 4.17 (m)		3.33 - 3.34(m)	3.34 - 3.35(m)		
6''	1.54 (d, J=6)		1.26 (d, J=6)	1.26 (d, J=6)		

Table 1. ¹*H-NMR Data of the Sugar Moieties of* **1**–**4**. At 600 MHz in CDCl₃, unless noted otherwise; δ in ppm, *J* in Hz. For resonances of the aglycones, see *Exper. Part.*

^a) In C_5D_5N . ^b) 4'-MeO for **2**.

Fig. 1. X-Ray crystal structure of 1

on the J value of 8 Hz of the anomeric H-atom. The sugar resonances at δ (H) 1.44–1.46 and 2.27–2.28 (2m, 2×1 H), at 3.16–3.17 (m, 1 H), and at 3.19–3.21 (m, 1 H) were assigned to CH₂(2'), H–C(3'), and H–C(4'), respectively, based on HSQC analysis.

Interpretation of the HSQC, HMBC, and NOSEY spectra of **2** (*Figs. 2* and *3*) revealed that the Me signal at $\delta(H)$ 1.36 (*d*, J=6 Hz, Me(6')) was linked at C(5'), and that the MeO group at $\delta(H)$ 3.39 (*s*) was in 4'-position of the sugar unit. From the NOSEY signals, it was concluded that H-C(3') and H-C(4') were in axial positions, indicating a 2,6-dideoxy- β -D-*arabino*-hexopyranosyl (=olivomosyl) residue.

The ¹³C-NMR spectrum of the aglycone of **2** (*Table 2*) showed signals of a C₂₁ steroid resembling those of 11α -O-(2-methylbutanoyl)- 12β -O-acetyl-tenacigenin B (**12**) [7]. Glycosidation shifts of **2** compared to **12** were observed for C(2) ($\Delta\delta$ -1.4), C(3) (+4.9), and C(4) (-4.2), which indicated that the sugar moiety was linked at the 3-O-atom of the aglycone. HMBC and NOESY correlations (*Figs. 2* and 3) further

Position	Aglycone			Position	Sugar moieties				
	1 ^a)	2	3	4		1 ^a)	2	3	4
1	38.9	37.6	38.9	38.9	1′	97.3		96.8	96.9
2	29.7	31.7	29.1	28.9	2′	37.6		36.1	36.1
3	76.3	76.1	76.3	76.3	3′	79.4		78.8	78.8
4	35.0	34.6	35.2	35.1	4′	83.0		79.1	79.2
5	44.7	43.9	45.1	45.1	5′	71.8		71.3	71.3
6	27.9	26.5	28.7	28.7	6'	18.9		18.6	18.6
7	32.8	28.9	34.5	34.5	3'-MeO	56.9		55.6	55.6
8	65.9	66.8	77.6	77.6					
9	54.2	51.1	49.8	49.6	1″	101.8	97.1	99.2	99.2
10	39.4	39.1	37.3	37.5	2''	73.1	35.7	71.8	71.8
11	67.9	68.4	74.1	74.0	3″	83.8	75.5	81.0	81.0
12	81.0	75.1	76.9	76.8	4″	74.4	80.8	72.8	72.9
13	48.2	45.8	52.9	52.9	5″	70.8	71.3	71.3	71.3
14	71.5	71.4	87.2	87.0	6''	18.4	17.9	17.8	17.9
15	27.4	26.8	24.7	24.6	3"-MeO ^b)	61.8	56.2	61.9	61.9
16	25.2	24.9	23.1	23.2	,				
17	62.8	60.6	59.6	59.6					
18	11.1	16.8	14.1	14.1					
19	13.0	12.7	13.0	12.9					
20	209.9	210.7	213.3	213.6					
21	32.1	29.8	31.1	31.1					
Ac		170.8							
		20.9							
MBu or Tig:									
O=C(1)		175.6	168.4	177.3					
C(2)		41.3	129.0	41.8					
C(3)		26.2	138.0	26.8					
C(4)		11.8	12.2	11.6					
2-Me		15.3	14.5	15.8					

Table 2. ¹³C-NMR Data of 1–4. At 150 MHz in CDCl₃, unless noted otherwise; δ in ppm.

^a) in C_5D_5N . ^b) 4'-MeO for **2**.

Fig. 2. Key HMBC correlations for 2

supported this assumption. Thus, the structure of **2** was elucidated as 3-O-olivomosyl-11-O-(2-methylbutanoyl)-12 β -O-acetyl-tenacigenin B, and named *tenacigenoside B*.

Fig. 3. Key NOESY correlations for 2

The NMR data due to the sugar moieties of **3** and **4** were identical to those of **1**. This was confirmed by mild acid hydrolysis of **3** and **4**, which gave only pachybiose according to TLC comparison. The same glycosidation shifts were observed in compounds **3** and **4**, the sugar moiety thus being attached at the 3-O-atom of the aglycone.

Compound **3** was obtained as colorless needles. The formula $C_{40}H_{64}O_{14}$ was confirmed by HR-ESI-MS (*m*/*z* 791.4216 ([*M*+Na]⁺; calc. 791.4194). The IR spectrum showed absorption bands for OH (3446) and C=O (1691 cm⁻¹) groups. In the ¹H-NMR spectrum, there were signals for one tigloyl (=(*E*)-2-methylbut-2-enoyl; Tig) group at δ (H) 1.86 (*s*, Me), 1.79 (*d*, *J*=6, Me), and 6.90 (br. *d*, *J*=7, =CH). The ¹³C-NMR spectrum also displayed typical Tig resonances (*Table 2*).

The ¹H-NMR spectrum of the aglycone moiety of **3** resembled that of tenacigenin C (**15**) [6] [15], except for the Tig group of **3**. The HMBC spectrum of **3** displayed correlations between the signal at $\delta(H)$ 5.63 (t, J=10 Hz, $H_{\beta}-C(11)$) and the Tig carbonyl group at $\delta(C)$ 168.4, indicating that the Tig was linked to the O-atom at C(11). The NOESY correlations between $\delta(H)$ 2.15 (H–C(9)) and 4.10 (H–C(12)), and between $\delta(H)$ 3.37 (H–C(17)) and 4.10 (H–C(12)) clearly showed that H–C(17) was α -oriented. Consequently, the structure of **3** was elucidated as 3-*O*-pachybiosyl-11 α -*O*-tigloyl-tenacigenin C, and named *tenacigenoside* C.

Compound **4** was obtained as colorless needles. The formula $C_{40}H_{66}O_{14}$ was deduced by HR-ESI-MS (m/z 793.4379, ($[M+Na]^+$; calc. 793.4350). The IR spectrum showed absorption bands for OH (3436) and C=O (1708 cm⁻¹) groups. In the ¹H-NMR spectrum of **4**, there were signals for one 2-methylbutanoyl (MBu) group at δ (H) 1.14 (d, J=7 Hz, Me), 0.92 (t, J=7 Hz, Me), 1.46/1.75 ($2m_c$, CH₂), and 2.35 (m_c , 1 H). The ¹³C-NMR spectrum (*Table 2*) of **4** also displayed MBu resonances. The HMBC correlation between δ (H) 5.55 (dd, J=10.0, 9.0, H_{β}-C(11)) and δ (C) 177.3 of the MBu unit indicated that the MBu residue was attached at the O-atom in 11-position of the aglycone. Thus, the structure of **4** was elucidated as 3-O-pachybiosyl-11 α -O-(2-methylbutanoyl)-tenacigenin C, and named *tenacigenoside D*.

Finally, the eleven known compounds were identified by comparison of their ORD, IR, ¹H- and ¹³C-NMR, and MS data with literature values. Compounds **8**, **10** and **12** were the main constituents isolated from the stems of *M. tenacissima*.

This work was supported by a grant (No. 30572254) from the National Natural Science Foundation of the People's Republic of China.

Experimental Part

General. TLC: Silica gel GF_{254} plates (0.5 mm; Qingdao Haiyang Chemical Group Co). Column chromatography (CC): silica gel (160–200 or 200–300 mesh; Qingdao Marine Chemical Factory), ODS (300–400 mesh; Fuji Sylisia Chemical, Ltd.), or Sephadex LH-20 (Pharmacia). Optical rotations: Perkin-Elmer-341 polarimeter, at 589 nm. IR Spectra: Perkin-Elmer FT-IR apparatus; in cm⁻¹. 1D-and 2D-NMR Spectra: Bruker Advance 600 instrument; δ in ppm rel. to Me₄Si, J in Hz. ESI-MS: Finni-gan LCQ^{DECA} spectrometer. HR-ESI-MS: Bruker BioTOF-Q spectrometer; in m/z. X-Ray crystallography: Siemens-P4 four-circle diffractometer.

Plant Material. The stems of *M. tenacissima* were collected in Sept. 2005 in Yunnan Province, P. R. China, and identified by *Prof. Zuo-Cheng Zhao*, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041. A voucher specimen (No. W2289) was deposited at the Herbarium of the Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.

Extraction and Isolation. The air-dried, powdered roots of *M. tenacissima* (11 kg) were boiled for 2 h in H₂O. The solvent was evaporated *in vacuo*, the resulting deep-brown syrup (*ca.* 1.0 kg) was suspended in H₂O and extracted with petroleum ether (PE) and then with AcOEt. The AcOEt-soluble fraction (286 g) was subjected to CC (SiO₂; CHCl₃/MeOH 98 : $2 \rightarrow 50:50$) to afford nine fractions (Fr.) according to TLC: *Fr.* 1 (1.5 g), *Fr.* 2 (3.2 g), *Fr.* 3 (6.5 g), *Fr.* 4 (2.8 g), *Fr.* 5 (2.6 g), *Fr.* 6 (3.5 g), *Fr.* 7 (5.6 g), *Fr.* 8 (8.9 g), and *Fr.* 9 (19 g). Compound **5** (0.5 g) was obtained from *Fr.* 1 by recrystallization from MeOH. *Fr.* 2 was subjected to reverse-phase CC (*ODS*; MeOH/H₂O 1:2) to afford **1** (0.14 g), **2** (0.10 g) and **15** (15 mg). Compound **9** (4.0 g) was obtained from *Fr.* 3 by recrystallization from MeOH. Further purification of the mother liquor by CC (*ODS*; MeOH/H₂O 2:3; then *Sephadex LH-20*, MeOH) gave **10** (1.12 g) and **11** (15 mg). *Fr.* 4 was subjected to CC (*ODS*; MeOH/H₂O 1:2) to afford **3** (0.11 g) and **4** (0.15 g). *Fr.* 5 was also purified by CC (*ODS*; MeOH/H₂O 1:3; then *Sephadex LH-20*; MeOH) to provide **6** (0.95 g) and **7** (0.16 g). Compound **8** (1.5 g) was separated from *Fr.* 6 by CC (*ODS*; MeOH/H₂O 1:3). *Fr.* 7 was further purified by CC (*ODS*; MeOH/H₂O 1:2) to give **12** (3.7 g) and **14** (0.1 g). *Fr.* 8 was subjected to CC (*ODS*; MeOH/H₂O 1:3). *Fr.* 8 was subjected to CC (*ODS*; MeOH/H₂O 1:3).

Tenacigenoside $A = (3\beta_5\alpha_1 1\alpha_1 2\beta_1 4\beta_1) - 3 - [(2,6-Dideoxy-4-O-(6-deoxy-3-O-methyl-\beta-D-allopyranosyl)-3-O-methyl-\beta-D-arabino-hexopyranosyl]oxy]-11,12-dihydroxy-8,14-epoxypregnan-20-one; 1).$ $Yield: 140 mg. Colorless prisms. M.p. 144–146° (MeOH). <math>[a]_D^{25} = -4 \ (c=0.1, \text{ MeOH})$. IR (KBr): 3403, 2971, 1712, 1160, 1102, 1098. ¹H-NMR (C₅D₅N; aglycone): 1.21 (*s*, Me(19)); 1.26 (*s*, Me(18)); 1.74 (*d*, J=10.0, H-C(9)); 2.48 (*s*, Me(21)); 2.93 (*dd*, $J=12.0, 6.0, H_a-C(17)$); 3.88–3.91 (*m*, H–C(3)); 3.62 (*d*, $J=10.0, H_a-C(12)$); 3.90 (*d*, $J=10.0, H_{\beta}-C(11)$); for sugar resonances, see *Table 1*. ¹³C-NMR: see *Table 2*. HR-ESI-MS: 691.3661 ([M+Na]⁺, C₃₅H₅₆NaO₁₂⁺; calc. 691.3669). X-Ray crystal structure: see *Fig. 1*.

Tenacigenoside $B (= (3\beta, 5\alpha, 11\alpha, 12\beta, 14\beta)-12$ -*Acetoxy-3-[(2,6-dideoxy-4-O-methyl-β-D-arabino-hexo-pyranosyl)oxy]-20-oxo-8,14-epoxypregnan-11-yl 2-Methylbutanoate*; **2**). Yield: 100 mg. Colorless needles. M.p. 166–167° (MeOH). $[\alpha]_{25}^{D5} = -9 (c=0.1, MeOH)$. IR (KBr): 3457, 2971, 1738, 1713, 1707, 1255, 1141, 1103, 1070. ¹H-NMR (CDCl₃; aglycone): 0.70 (t, J=7.0, Me of MBu); 1.05 (d, J=7.0, Me of MBu); 1.07 (s, Me(19)); 1.10 (s, Me(18)); 1.99 (s, Ac); 2.03 (d, J=9.0, H-C(9)); 2.22 (s, Me(21)); 2.94–2.95 ($m, H_a-C(17)$); 3.65–3.67 (m, H-C(3)); 5.00 ($d, J=10.0, H_a-C(12)$); 5.37 ($dd, J=10.0, 3, H_{\beta}-C(11)$); for sugar resonances, see *Table 1*. ¹³C-NMR: see *Table 2*. HR-ESI-MS: 657.3595 ($[M+Na]^+$, C₃₅H₅₄NaO₁₀⁺; calc. 657.3615).

Tenacigenoside C (=(3 β ,5 α ,11 α ,12 β ,14 β)-3-{[2,6-Dideoxy-4-O-(6-deoxy-3-O-methyl- β -D-allopyranosyl]-3-O-methyl- β -D-arabino-hexopyranosyl]oxy]-8,12,14-trihydroxy-20-oxopregnan-11-yl (2E)-2-Methylbut-2-enoate; **3**). Yield: 110 mg. Colorless needles. M.p. 127–129° (MeOH). [a]_D²⁵ = +31 (c=0.1, MeOH). IR (KBr): 3446, 2932, 1691, 1273, 1162, 1127, 1071. ¹H-NMR (CDCl₃; aglycone): 1.09 (s, Me(19)); 1.13 (s, Me(18)); 1.79 (d, J=6.0, Me of Tig); 1.86 (s, Me of Tig); 2.15 (d, J=11.0, H–C(9)); 2.23 (s, Me(21)); 3.34–3.37 (m, H_{α}–C(17)); 3.61–3.62 (m, H–C(3)); 4.10 (dd, J=10.0, 3, H_{α}–C(12)); 5.63 (t, J=10.0, H_{β}–C(11)); 6.90 (d, J=7.0, 1 H of Tig); for sugar resonances, see *Table 1*. ¹³C-NMR: see *Table 2*. HR-ESI-MS: 791.4216 ([M+Na]⁺, C₄₀H₆₄NaO⁺₁₄; calc. 791.4194).

Tenacigenoside D (= (3 β ,5 α ,11 α ,12 β ,14 β)-3-{[2,6-Dideoxy-4-O-(6-deoxy-3-O-methyl- β -D-allopyranosyl]-3-O-methyl- β -D-arabino-hexopyranosyl]oxy]-8,12,14-trihydroxy-20-oxopregnan-11-yl 2-Methyl-

butanoate; **4**). Yield: 150 mg. Colorless needles. M.p. 114–116° (MeOH). $[\alpha]_D^{25} = +30$ (c=0.1, MeOH). IR (KBr): 3436, 2933, 1708, 1377, 1160, 1128, 1082. ¹H-NMR (CDCl₃; aglycone): 1.09 (s, Me(19)); 1.13 (s, Me(18)); 0.92 (t, J=7.0, Me of MBu); 1.14 (d, J=7.0, Me of MBu); 1.46, 1.75 ($2m_c$, CH₂ of MBu); 2.08 (d, J=11.0, H–C(9)); 2.25 (s, Me(21)); 2.35 (m_c , CH of MBu); 3.35–3.37 (m, H_a–C(17)); 3.62–3.63 (m, H–C(3)); 4.04 (d, J=9, H_a–C(12)); 5.55 (dd, J=10.0, 9.0, H_β–C(11)); for sugar resonances, see *Table 1*. ¹³C-NMR: see *Table 2*. HR-ESI-MS: 793.4379 ([M+Na]⁺, C₄₀H₆₆NaO⁺₁₄; calc. 793.4350).

Acid Hydrolysis. A soln. of the appropriate compound (5 mg of 1, 3, or 4) in MeOH (3 ml) and 0.1M H₂SO₄ (1 ml) was kept at 60° for 30 min. Then, H₂O (3 ml) was added, the mixture was concentrated to a volume of *ca*. 4 ml, and kept at 60° for another 30 min, before cooled to r.t. The soln. was extracted with Et₂O (3×5 ml), the org. layer was washed with H₂O (4×5 ml), dried (Na₂SO₄), and evaporated to dryness. The resulting residue was recrystallized from PE/AcOEt. The aq. acidic layer of the hydrolysate was neutralized with 5% aq. Ba(OH)₂ soln. The precipitate was filtered, and the filtrate was evaporated. The residue, pachybiose (Pac), was analyzed by co-TLC (SiO₂; CHCl₃/MeOH 9:1) with an authentic sample.

X-Ray Crystallography and Structure Refinement of 1^2). The analysis was performed with a single crystal ($0.56 \times 0.38 \times 0.34$ mm) at 298 K. Formula $C_{35}H_{56}O_{12}$, M_r 668.80; monoclinic, space group *P* 21, a=12.555(2), b=6.435(1), c=21.828(4) Å, $\alpha=\gamma=90.00^\circ$, $\beta=90.17(15)^\circ$; V=1763.5(6) Å³, Z=2; $\rho=1.260$ Mg/m³, $\mu=0.094$ mm⁻¹, F(000)=724. Intensity data were collected on a *Siemens-P4* four-circle diffractometer with a graphite monochromator (MoK_a radiation, $\lambda=0.71073$ Å). A total of 4,521 unique reflections were collected, of which 4,186 were observed. The structure was solved by direct methods using SHELXS-97, and refined by full-matrix least-squares calculations. The final *R* indices for $I > 2\sigma(I)$ were $R_1 = 0.0705$ and $wR_2 = 0.0768$.

REFERENCES

- [1] W. X. Xing, R. Z. Cheng, B. Cheng, H. M. Mi, Y. T. Wu, Res. Pract. Chin. Med. 2004, 18(1), 33.
- [2] R. E. Aenkata, R. E. Nageswara, S. S. Santharam, Indian J. Pharm. 1976, 38, 54.
- [3] S. Singhal, M. Mittal, M. P. Khare, A. Khare, Indian J. Chem., Sect. B 1980, 19, 178.
- [4] S. Shinghal, M. P. Khare, A. Khare, *Phytochemistry* 1980, 19, 2427.
- [5] S. Q. Luo, G. Yu, D. N. Yi, H. F. Jin, Acta Chim. Sin. 1982, 40, 321.
- [6] R. Z. Yang, C. R. Yang, J. Zhou, Acta Bot. Yunnan. 1981, 3, 271.
- [7] S. Q. Luo, L. Z. Lin, G. A. Cordell, L. Xue, M. P. Johnson, Phytochemistry 1993, 34, 1615.
- [8] S. X. Qiu, S. Q. Luo, L. Z. Lin, G. A. Cordell, Phytochemistry 1996, 41, 1385.
- [9] S. Miyakawa, K. Yamaura, K. Kaneko, H. Mitsuhashi, Phytochemistry 1986, 25, 2861.
- [10] Y. Jiang, S. Q. Luo, Chin. J. Pharm. 1996, 27, 391.
- [11] J. J. Chen, Z. X. Zhang, J. Zhou, Acta Bot. Yunnan. 1999, 21, 369.
- [12] Z. H. Xia, W. X. Xing, S. L. Mao, A. N. Lao, J. Uzawa, S. Yoshida, Y. Fujimoto, J. Asian. Nat. Prod. Res. 2004, 6, 79.
- [13] W. X. Xin, B. Cheng, H. M. Mi, G. J. Yang, Y. T. Wu, Acta. Pharm. Sin. 2004, 39, 272.
- [14] J. Deng, Z. X. Liao, D. F. Chen, Phytochemistry 2005, 66, 1040.
- [15] J. Deng, Z. X. Liao, D. F. Chen, Chin. Chem. Lett. 2005, 16, 487.
- [16] J. Deng, Z. X. Liao, D. F. Chen, Helv. Chim. Acta 2005, 88, 2675.
- [17] D. Goel, M. Ali, Pharmazie 2004, 59, 735.
- [18] D. G. Joshi, M. G. Chauhan, Indian Drugs 1994, 31, 294.
- [19] S. Singhal, M. P. Khare, A. Khare, Phytochemistry 1980, 19, 2431.
- [20] S. Wang, Y. H. Lai, B. Tian, L. Yang, Chem. Pharm. Bull. 2006, 54, 696.
- [21] R. Kasai, M. Suzuo, J. Asakawa, O. Tanaka, Tetrahedron Lett. 1977, 175.

Received July 20, 2006

²) The crystallographic data of 1 were deposited with the *Cambridge Crystallographic Data Centre* as deposition No. CCDC-606857. Copies of the data can be obtained, free of charge, at http://www.ccdc.cam.ac.uk/data_request/cif.